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Introduction

Let smooth planar curves C, C1 and C2

be given. Draw the tangent line to C
through any point r on this curve, and
let it meet C1 in a point r1 and C2 in a
point r2. Let the tangent lines to the re-
spective curves through these points meet
in a point r12. When the point r moves
along C, the point r12 draws a new curve
C12. Thus, a local mapping on the set
of planar curves is defined,

F : (C,C1, C2) 7→ C12,

which will be referred to as the
tangential map.
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The word “ local ” means that:

• first, the map is defined not for all triples of curves since the tangent to
C may not intersect C1 or C2. Only such curves or parts of the curves are
considered where the construction is possible;

• second, the mapping may be multivalued since there may be several
intersections. In such a case a fixed branch of the mapping is considered.

Contents of the talk

• 3D consistency property;

• relation to the factorization of differential operators;

• relation to some integrable equations;

• examples and reductions.
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The logarithmic spiral was introduced
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The logarithmic spiral was introduced
by Descartes in 1638 letter to Mersenne.
Jacob I Bernoulli (1654–1705) had or-
dered to engrave it on his tombstone1

with the inscription

EADEM MUTATA RESURGO
2

because this curve is invariant with re-
spect to a lot of geometrical transfor-
mations.

1The images are taken from Wikipedia
2I’ll be back
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The logarithmic spiral was introduced
by Descartes in 1638 letter to Mersenne.
Jacob I Bernoulli (1654–1705) had or-
dered to engrave it on his tombstone1

with the inscription

EADEM MUTATA RESURGO
2

because this curve is invariant with re-
spect to a lot of geometrical transfor-
mations.

It is invariant under the tangential

map as well !

Theorem 1. Consider the intersection points of the logarithmic spiral C
with its tangent. The tangents through these points meet on the same
spiral. In other words, F (C,C,C) = C for any branch of the map F .

1The images are taken from Wikipedia
2I’ll be back



3D consistency

The main property of the tangential
map is 3D-consistency. This means
that if one starts from the curves C,
C1, C2, C3 and constructs the curves
Cij = F (C,Ci, Cj) then the curve
C123 constructed from the triple Ci,
Cij , Cik is one and the same for any
permutation of i, j, k.
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Cij , Cik is one and the same for any
permutation of i, j, k.

Alternatively, this can be formu-
lated as follows.

1

2

3
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13

23

123

Theorem 2. The tangential map satisfies the (local) identity

C123 = F (C1, F (C,C1, C2), F (C,C1, C3))

= F (C2, F (C,C1, C2), F (C,C2, C3))

= F (C3, F (C,C1, C3), F (C,C2, C3)).

(1)
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The combinatorial structure of 3D-consistency
[1, 2] is represented by assigning the argu-
ments of the map to the vertices of a cube,
and the map itself to the faces. The N -fold
iteration of the map is associated with an
(N + 1)-dimensional cube.

This notion is applied usually to the dis-
crete integrable equations of the difference
KdV type (the fields in the vertices of the
cube) or to the Yang-Baxter type mappings
[3] (the fields on the edges of the cube). These types of equations appear, for
example, as nonlinear superposition principle for Darboux-Bäcklund trans-
formations.

C

C1

C2

C12

C3 C23

C13 C123

[1] F.W. Nijhoff, A.J. Walker. The discrete and continuous Painlevé hierarchy and the
Garnier system. Glasgow Math. J. 43A (2001) 109–123.

[2] A.I. Bobenko, Yu.B. Suris. Integrable systems on quad-graphs. Int. Math. Res.
Notes (2002) 573–611.

[3] A.P. Veselov. Yang-Baxter maps and integrable dynamics. Phys. Lett. A 314:3
(2003) 214–221.

http://dx.doi.org/10.1017/S0017089501000106
http://dx.doi.org/10.1155/S1073792802110075
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The simplest examples

• Fields in the vertices:
Discrete wave equation

u+ ui + uj + uij = 0

Independently on the order of computation:

u123 = 2u+ u1 + u2 + u3.



The simplest examples

• Fields in the vertices:
Bianchi permutability theorem for Korteweg-de Vries equation

(u− uij)(ui − uj) = µj − µi

Independently on the order of computation:

u123 = − (µ2 − µ1)u1u2 + c.p.

(µ2 − µ1)u3 + c.p.



The simplest examples

• Fields in the vertices:
Bianchi permutability theorem for sinh-Gordon (Hirota eq [4])

µi(uui + ujuij) = µj(uuj + uiuij) (2)

Independently on the order of computation:

u123 = − ((µ2)2 − (µ1)2)µ3u1u2 + c.p.

((µ2)2 − (µ1)2)µ3u3 + c.p.

[4] R. Hirota. Nonlinear partial difference equations. III. Discrete sine-Gordon equation.
J. Phys. Soc. Japan 43 (1977) 2079–2086.

http://dx.doi.org/10.1143/JPSJ.43.2079
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• Fields on the edges:
another form of discrete KdV (aj = uj − u):

aji = ai +
µi − µj

ai − aj

[4] R. Hirota. Nonlinear partial difference equations. III. Discrete sine-Gordon equation.
J. Phys. Soc. Japan 43 (1977) 2079–2086.

http://dx.doi.org/10.1143/JPSJ.43.2079


Important distinctions in our case:

• Both dKdV or YB types of equations are 2D : two discrete independent
variables correspond to the shifts along the edges of an elementary square.
In contrast, the tangential map is related to a 3D equation: in addition to
the discrete variables a continuous one appears corresponding to a parameter
along the curves.

• The tangential map is asymmetric: the roles of the involved curves are
obviously different. In particular, we will see that the construction of Cij
from C, Ci, Cj is described by a differential mapping, while the construc-

tion, for instance, of Cj from C, Ci, Cij requires an integration.

In the terminology of [5], the non-degeneracy condition is not fulfilled.
This explains the choice of the set C, Ci, Cj , Ck, . . . as preferable initial
data, rather that the sequence C, Ci, Cij , Cijk, . . . , as it is usual in the
standard formulation of YB mappings.

[5] P. Etingof, T. Schedler, A. Soloviev. Set-theoretical solutions to the quantum Yang-
Baxter equation. Duke 100:2 (1999) 169–209.



Factorization of differential operators

Let the curve C be given in a parametric form r = r(t). The intersection
with the curve Ci is given by an equation of the form

ri(t) = r(t) + ai(t)ṙ(t), ṙ := D(r) :=
dr

dt

which plays the role of an auxiliary linear problem for one branch of the
tangential map. The curve Cij is defined from the compatibility condition

(1 + ajiD)(1 + aiD) = (1 + aijD)(1 + ajD), (3)

where the coefficient aij correspond to the edge CjCij . This equation can
be solved as the differential mapping

(ai, aj) 7→ (aij , a
j
i ), aij =

(ai − aj)ai

ai − aj + aiȧj − ȧiaj
.aij =

(ai − aj)ai

ai − aj + aiȧj − ȧiaj
.aij =

(ai − aj)ai

ai − aj + aiȧj − ȧiaj
. (4)



Alternatively, the potential v defined accordingly to the formula ai = v/vi
is governed by the map

f : (v, vi, vj) 7→ vij , vij =
vivj
v

+
v̇ivj − viv̇j
vj − vi

.vij =
vivj
v

+
v̇ivj − viv̇j
vj − vi

.vij =
vivj
v

+
v̇ivj − viv̇j
vj − vi

. (5)

Mappings (4), (5) are interpreted as 3-dimensional equations on Z2×R,
with the fields a corresponding to the edges of the lattice and v correspond-
ing to the vertices. These equations are related via simple substitutions to
the semidiscrete Toda lattice, introduced in [6] for the first time (to the best
of author’s knowledge), see also [7].

• A bit more simple mappings are obtained under the normalization with
the unitary leading term:

(D − aji )(D − ai) = (D − aij)(D − aj).

[6] D. Levi, L. Pilloni, P.M. Santini. Integrable three-dimensional lattices. J. Phys. A
14:7 (1981) 1567–1575.

[7] V.E. Adler, S.Ya. Startsev. Discrete analogues of the Liouville equation. Theor.
Math. Phys. 121:2 (1999) 271–284.

http://dx.doi.org/10.1088/0305-4470/14/7/013
http://dx.doi.org/10.1007/BF02557219


The property of 3D-consistency is equivalent to the commutativity of the
operators Ti : aj → aji :

TiTj(a
k) = TjTi(a

k), (6)

or to the identity of type (1):

v123 = f(v1, f(v, v1, v2), f(v, v1, v3))

= f(v2, f(v, v1, v2), f(v, v2, v3))

= f(v3, f(v, v1, v3), f(v, v2, v3)).

(7)

Both identities can be proved straightforwardly, although the computation
is rather tedious. It can be avoided by the following argument.



Proof of Theorem 2. Accordingly to (3), the tangential map amounts to
the reconstruction of an ordinary second order differential operator from its
kernel, under the condition of unitary constant term. Consider the differen-
tial operator

A = (1 + Ti(a
k
j )D)(1 + ajiD)(1 + aiD)

corresponding to one of three possible ways of computing rijk.
Eq (3) implies that A is divisible from the right not only by 1 + aiD,

but also by 1 + ajD. Moreover, two left factors of A can be rewritten
as (1 + Ti(a

j
k)D)(1 + akiD), that is operator A does not changes under

permutation of j and k. But this means that it is divisible from the right
by 1 + akD as well.

The invariance of the kernel with respect to any permutation of indices
implies the invariance of the operator A itself. �



The N -fold tangential map corresponds to a differential operator of order N
divisible from the right by operators 1+aiD, i = 1, . . . , N . This immediately
leads to the Wronskian formula (for each of two components of r)

r1,2,...,N =

det


r ϕ1 ϕ2 . . . ϕN
ṙ ϕ̇1 ϕ̇2 . . . ϕ̇N
...

...
...

...
DN (r) DN (ϕ1) DN (ϕ2) . . . DN (ϕN )


det

 ϕ̇1 ϕ̇2 . . . ϕ̇N
...

...
...

DN (ϕ1) DN (ϕ2) . . . DN (ϕN )


where ai = −ϕi/ϕ̇i.



Example. Logarithmic spirals and concentric circles

Let r = e(γ+i)t (γ = 0 correspond to the circle). Then the curves

rk = r + akṙ = (1 + γak + iak)e(γ+i)t

are homothetic to the original one if and only if the coefficients ak are
constant. The action of the map (4) on the constant coefficients is identical:
akj = ak, therefore the tangential map amounts to the rotational dilation

rjk = (1 + γaj + iaj)(1 + γak + iak)r

which preserves the family of curves under consideration. The N -fold map-
ping is given by analogous explicit formula, so that this example can be
considered trivial.



• Even this simplest example shows that the correspondence between
the tangential map and differential operators is not one-to-one. It depends
on the choice of initial curve and its parametrization. The mappings corre-
sponding to the same operators are locally equivalent, but the global picture
may be quite different. For example, the number of branches is 4 the case
of concentric circles and ∞ in the case of logarithmic spirals.

• The auto-map of log spiral is obtained under the additional constraint
rk(t) = r(t+ δk) This implies that δk are roots of equation

cos δ − γ sin δ = exp(−γδ),

and the coefficients ak are expressed by the formula

ak = exp(γδk) sin δk.

It can be deduced from here that the boundary of the domain free of the
lines is approximated by a parabola.



Example. Periodic coefficients

A picture with good global behavior of the curves can be obtained if the
starting curve is the circle r = eit again, and the coefficients ak(t) are
periodic with periods commensurable with π. For example, the plots below
correspond to the coefficients of the general form

ak = α+ β sin
(
m
n t+ γ

)
.



Reduction. Loxodromes

We will say, slightly abusing the terminology, that a curve C̃ is a loxodrome
for a given curve C if it intersects the tangents to C under a constant angle
γ (in particular, if γ = π/2, then C̃ is an involute of C).

Remarkably, the tangential map preserves this type of relation between
the curves.

r

r1

r2

r12Γ1

Γ2

Theorem 3. Let curves Ci and Cj meet tangents to a curve C under
constant angles γi and γj respectively, and γi 6= γj . Then the curve
Cij = F (C,Ci, Cj) meets tangents to Ci under the angle γj and tangents
to Cj under the angle γi.
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• Formally, this statement looks like Bianchi theorem on the permutabil-
ity of Darboux-Bäcklund type transformations. However, the situation in
this case turns out to be more simple: the construction of the loxodromes
amounts to a simple quadrature, while Bäcklund transformations amount
to solving of Riccati equations.

The superposition principle for the transformations under consideration
can be brought to the linear form:

sin(γi − γj)yij = sin(γi)yi − sin(γj)yj .

A genuine Darboux transformation leading to
the nonlinear superposition principle is pro-
vided by the reduction presented in the next
example.

C Ci

Cj Cij

Γj Γj

Γi

Γi



Reduction. Darboux transformation

Let Hγ be the homothety with a coefficient
γ 6= 1 with respect to a fixed point O. The
curves C, C̃ are in the tangential corre-
spondence with parameter γ if the tangent
to C through any point r meets Hγ(C̃)

in the point Hγ(r̃), and the tangent to C̃
through r̃ meets Hγ(C) in the point Hγ(r).

This constraint is preserved under the
tangential map as well.

Theorem 4. Let a curve C be in the tangential correspondence with curves
Ci, Cj , with parameters γi, γj respectively, and γi 6= γj . Then an unique
curve Cij exists which is in the tangential correspondence with the curves
Ci, Cj , with the parameters γj , γi respectively. Moreover,

Hγiγj (Cij) = F (C,Hγi(Ci), Hγj (Cj)).
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• It can be proved that, under a suitable parametrization, the tangential
correspondence is equivalent to the Darboux transformation for the equation

r̈ + uṙ + λr = 0

which is nothing but the spectral problem for the sinh-Gordon equation.
The mappings (4), (5) take the algebraic forms

aij =
ai − aj

aj(µiai − µjaj)
, vij(vj − vi) = v(µivj − µjvi)

equivalent respectively to the mapping (F4) from [8] and to the Hirota
equation (2). These equations express the nonlinear superposition principle
for the Darboux transformation.

[8] V.E. Adler, A.I. Bobenko, Yu.B. Suris. Geometry of Yang-Baxter maps: pencils of
conics and quadrirational mappings. Comm. Anal. and Geom. 12:5 (2004) 967–
1007.

http://projecteuclid.org/euclid.cag/1117666350
http://projecteuclid.org/euclid.cag/1117666350


Discrete tangential map

An analog of the tangential map for the discrete curves r = r(n) reads

ri = r + ai(T − 1)(r), T : n 7→ n+ 1.

This leads to the factorization of the difference operators:

(1 + aij(T − 1))(1 + aj(T − 1)) = (1 + aji (T − 1))(1 + ai(T − 1))

and to the mappings (ai = T (v)/vi)

(ai, aj) 7→ (aij , a
j
i ), aij =

(ai − aj)T (ai)

(1− aj)T (ai)− (1− ai)T (aj)
,aij =

(ai − aj)T (ai)

(1− aj)T (ai)− (1− ai)T (aj)
,aij =

(ai − aj)T (ai)

(1− aj)T (ai)− (1− ai)T (aj)
, (8)

f : (v, vi, vj) 7→ vij , vij =
vivjT (vj − vi)
T (v)(vj − vi)

+
T (vi)vj − viT (vj)

vj − vi
vij =

vivjT (vj − vi)
T (v)(vj − vi)

+
T (vi)vj − viT (vj)

vj − vi
vij =

vivjT (vj − vi)
T (v)(vj − vi)

+
T (vi)vj − viT (vj)

vj − vi
. (9)



• The symmetric form of (9)

T (vj − vi)
T (v)

+
T (vi)− vij

vi
+
vij − T (vj)

vj
= 0,

shows that the shift T is actually on the equal footing with Ti and Tj .

• Difference substitutions relate this equation to the discrete Toda and
KP equations (in particular, the variable v is identified as the wave function
of the linear problem for KP equation [9]). Alternative geometric interpre-
tations of these equations can be found in the papers [10, 9], see also [11]
where a general theory of this class of equations is developed.

[9] B.G. Konopelchenko, W.K. Schief. Menelaus’ theorem, Clifford configurations and
inversive geometry of the Schwarzian KP hierarchy. J. Phys. A 35:29 (2002) 6125–
6144.

[10] A. Doliwa. Geometric discretization of the Toda system. Phys. Lett. A 234 (1997)
187–192.

[11] V.E. Adler, A.I. Bobenko, Yu.B. Suris. The classification of integrable discrete
equations of octahedron type, to appear, 2009.

http://dx.doi.org/10.1088/0305-4470/35/29/313
http://dx.doi.org/10.1088/0305-4470/35/29/313
http://dx.doi.org/10.1016/S0375-9601(97)00477-5


• The 3D-consistency property of the maps (8) and (9) is formulated by
the same general identities (6), (7) as in the continuous case, and is proved
along the lines of the proof of Theorem 2.

• There exists also the simple geometric explanation of this property3: the
triangles r12(n)r13(n)r23(n) and r12(n+1)r13(n+1)r23(n+1) are perspec-
tive with respect to the line r(n+ 1)r(n+ 2) (marked by n+ 1 on the fig-
ure), therefore, accordingly to
Desargues theorem, the lines

r12(n)r12(n+ 1),

r13(n)r13(n+ 1),

r23(n)r23(n+ 1)

are concurrent, as required.

r

n

n+1

r1

r2

r3

r12

r13

r23

r123

3This proof is due to W.K. Schief



Conclusion

The tangential mapping is not a quite new object, rather it is of certain inter-
est as one more geometric interpretation of well-known integrable equations,
3D and 2D (under some reductions):

• semidiscrete Toda lattice (∆∆D);

• Hirota equation (∆∆, under a reduction);

• a modification of discrete KP equation (∆∆∆, in the discrete version
of the map).


